A new geometric-arithmetic index

Gholamhossein Fath-Tabar • Boris Furtula • Ivan Gutman

Received: 28 April 2009 / Accepted: 27 July 2009 / Published online: 13 August 2009
© Springer Science+Business Media, LLC 2009

Abstract

A new molecular-structure descriptor $G A_{2}$, belonging to the class of geometric-arithmetic indices, is considered. It is closely related to the Szeged and vertex PI indices. The main properties of $G A_{2}$ are established, including lower and upper bounds. The trees with minimum and maximum $G A_{2}$ are characterized.

Keywords Geometric-arithmetic index • Szeged index • PI index •
Distance (in graph) • Molecular-structure descriptor

1 Introduction

In a recent paper [1] the so-called geometric-arithmetic index $G A$ was conceived, defined as

$$
G A=G A(G)=\sum_{u v \in E(G)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}
$$

where $u v$ is an edge of the (molecular) graph G connecting the vertices u and v, where d_{u} stands for the degree of the vertex u, and where the summation goes over

[^0]all edges of G. It is easy to recognize that $G A$ is just the first representative of a class of topological indices of the form
\[

$$
\begin{equation*}
G A_{\text {general }}=G A_{\text {general }}(G)=\sum_{u v \in E(G)} \frac{\sqrt{\mathcal{Q}_{u} \mathcal{Q}_{v}}}{\frac{1}{2}\left(\mathcal{Q}_{u}+\mathcal{Q}_{v}\right)} \tag{1}
\end{equation*}
$$

\]

where \mathcal{Q}_{u} is some quantity that in a unique manner can be associated with the vertex u of the graph G.

In this work we focus our attention to another member of this class, which we denote by $G A_{2}$ and which-tentatively-may be referred to as the second geomet-ric-arithmetic index. Whereas $G A$ is defined so as to be related to the famous Randić index [2-4], $G A_{2}$ is constructed in such a manner that it is related with Szeged and PI indices (see below).

Let G be a connected graph with n vertices and m edges, with vertex set $V(G)$ and edge set $E(G)$. As usual [5], the distance $d(x, y \mid G)$ between two vertices $x, y \in V(G)$ is defined as the length ($=$ number of edges) of the shortest path that connects x and y.

Let $e=u v$ be an edge of G, connecting the vertices u and v. Define the sets

$$
\begin{aligned}
& \mathbf{N}(e, u, G)=\{x \in V(G) \mid d(x, u \mid G)<d(x, v \mid G)\} \\
& \mathbf{N}(e, v, G)=\{x \in V(G) \mid d(x, u \mid G)>d(x, v \mid G)\} .
\end{aligned}
$$

consisting, respectively, of vertices of G lying closer to u than to v, and lying closer to v than to u. The number of such vertices is then

$$
n_{u}(e)=n_{u}(e, G)=|\mathbf{N}(e, u, G)| \quad \text { and } \quad n_{v}(e)=n_{v}(e)=|\mathbf{N}(e, v, G)| .
$$

Note that vertices equidistant to u and v are not included into either $\mathbf{N}(e, u, G)$ or $\mathbf{N}(e, v, G)$. Such vertices exist only if the edge $u v$ belongs to an odd-membered cycle. Hence, in the case of bipartite graphs, $\mathbf{N}(e, u, G) \cup \mathbf{N}(e, v, G)=V(G)$ and, consequently,

$$
\begin{equation*}
n_{u}(e, G)+n_{v}(e, G)=n \tag{2}
\end{equation*}
$$

for all edges of the graph G.
It it also worth noting that $u \in \mathbf{N}(e, u, G)$ and $v \in \mathbf{N}(e, v, G)$, which implies that $n_{u}(e) \geq 1$ and $n_{v}(e) \geq 1$.

A previously much studied molecular-structure descriptor is the Szeged index:

$$
\begin{equation*}
S z=S z(G)=\sum_{u v \in E(G)} n_{u}(e) \cdot n_{v}(e) \tag{3}
\end{equation*}
$$

Its main mathematical properties are outlined in the review [6] whereas data on its numerous chemical and pharmacological applications can be found in the book [7] and the references cited therein.

Another recently conceived structure descriptor [8-12], based on the numbers $n_{u}(e)$ and $n_{v}(e)$, is the so-called vertex PI index:

$$
\begin{equation*}
P I_{v}=P I_{v}(G)=\sum_{u v \in E(G)}\left[n_{u}(e)+n_{v}(e)\right] . \tag{4}
\end{equation*}
$$

Recall that the abbreviation PI comes from "Padmakar-Ivan" where "Padmakar" is the first name of Khadikar, the inventor of the PI index [7,13-15], whereas "Ivan" is the first name of Gutman, who did not at all contribute to the development of this structure descriptor.

Because of (2), the vertex PI index of a bipartite graph with n vertices and m edges satisfies the simple identity

$$
\begin{equation*}
P I_{v}(G)=m n . \tag{5}
\end{equation*}
$$

Now, motivated by the expressions occurring on the right-hand sides of Eqs. (3) and (4), and in view of the general formula (1), we define the second geometric-arithmetic index as

$$
\begin{equation*}
G A_{2}=G A_{2}(G)=\sum_{u v \in E(G)} \frac{\sqrt{n_{u}(e) \cdot n_{v}(e)}}{\frac{1}{2}\left[n_{u}(e)+n_{v}(e)\right]} \tag{6}
\end{equation*}
$$

2 Bounds for the second geometric-arithmetic index

We say that the vertices x and y of a graph G are equivalent if the subgraphs $G-x$ and $G-y$ are isomorphic, $G-x \cong G-y$.

As usual, by K_{n} we denote the complete graph on n vertices. Among connected graphs K_{n} is the only graph for which $n_{u}(e)=n_{v}(e)=1$ holds for all edges $e=u v$.

In view of the well-known fact that the geometric mean is less than or equal to the arithmetic mean, we have for any geometric-arithmetic index of a graph G with m edges,

$$
G A_{\text {general }}(G) \leq m
$$

The special case of this is:
Proposition 1 Let G be a connected graph. Then $G A_{2}(G) \leq m$, with equality if and only if all vertices of G are mutually equivalent.

Only a few molecular graphs have the property $G A_{2}=m$: the cycle and K_{2}.
Since for any edge $e=u v$ we have $n_{u}(e)+n_{v}(e) \geq 2$ and $\sqrt{n_{u}(e) \cdot n_{v}(e)} \leq$ $\left[n_{u}(e)+n_{v}(e)\right] / 2$, directly from Eqs. 4 and 6 we get:

Proposition 2 For any connected graph G,

$$
G A_{2}(G) \leq \frac{1}{2} P I_{v}(G)
$$

with equality if and only if $n_{u}(e)=n_{v}(e)=1$ holds for all edges $e=u v$, i. e., if and only if $G \cong K_{n}$.

Recall that in the case of bipartite graphs (that is, in the case of almost all molecular graphs), $P I_{v}=m n$.

Proposition 3 For any connected graph with m edges,

$$
\begin{equation*}
G A_{2}(G) \leq \sqrt{m S z(G)} \tag{7}
\end{equation*}
$$

with equality if and only if $G \cong K_{n}$.
Proof Because of $n_{u}(e), n_{v}(e) \geq 1$,

$$
\begin{equation*}
G A_{2}(G) \leq \sum_{u v \in E(G)} \sqrt{n_{u}(e) \cdot n_{v}(e)} \tag{8}
\end{equation*}
$$

Applying the Cauchy-Schwarz inequality,

$$
\begin{align*}
\sum_{u v \in E(G)} \sqrt{n_{u}(e) \cdot n_{v}(e)} & =\sum_{u v \in E(G)} 1 \cdot \sqrt{n_{u}(e) \cdot n_{v}(e)} \\
& \leq \sqrt{\left(\sum_{u v \in E(G)} 1^{2}\right)\left(\sum_{u v \in(E G)} n_{u}(e) \cdot n_{v}(e)\right)} \\
& =\sqrt{m \cdot S z(G)} \tag{9}
\end{align*}
$$

Equality in (9) occurs if and only if $n_{u}(e)=n_{v}(e)$ holds for all e. For equality in (8), in addition it must be $n_{u}(e)=n_{v}(e)=1$, which implies $G \cong K_{n}$.

Proposition 4 For any connected graph with m edges,

$$
\begin{equation*}
G A_{2}(G) \leq \sqrt{S z(G)+m(m-1)} \tag{10}
\end{equation*}
$$

with equality if and only if $G \cong K_{n}$.
Proof

$$
\begin{align*}
{\left[G A_{2}(G)\right]^{2}=} & \sum_{u v} \frac{4 n_{u}(e) \cdot n_{v}(e)}{\left[n_{u}(e)+n_{v}(e)\right]^{2}} \\
& +2 \sum_{u v \neq u^{\prime} v^{\prime}} \frac{2 \sqrt{n_{u}(e) \cdot n_{v}(e)}}{n_{u}(e)+n_{v}(e)} \cdot \frac{2 \sqrt{n_{u^{\prime}}\left(e^{\prime}\right) \cdot n_{v^{\prime}}\left(e^{\prime}\right)}}{n_{u^{\prime}}\left(e^{\prime}\right)+n_{v^{\prime}}\left(e^{\prime}\right)} \\
\leq & \sum_{u v}\left[n_{u}(e) \cdot n_{v}(e)\right]+2 \sum_{u v \neq u^{\prime} v^{\prime}}(1) \cdot(1) \\
= & \sum_{u v}\left[n_{u}(e) \cdot n_{v}(e)\right]+2 \frac{m(m-1)}{2} \tag{11}
\end{align*}
$$

and inequality (10) follows from (3). The case of equality is analyzed in the same manner as in the previous propositions.

Proposition 5 For the complete graph inequalities (7) and (10) are equivalent. For all other connected graphs the upper bound (10) is better than (7).

Proof The inequality $\sqrt{m S z} \geq \sqrt{S z+m(m-1)}$ is easily transformed into $S z \geq m$, which because of $n_{u}(e) \cdot n_{v}(e) \geq 1$ is obeyed by all graphs with m edges. Equality happens if and only if $n_{u}(e)=n_{v}(e)=1$ for all edges.

Proposition 6 Let G be a connected graph with n vertices and $m \geq 1$ edges. Then

$$
\begin{equation*}
G A_{2}(G) \geq \frac{2}{n} \sqrt{S z+m(m-1)} \tag{12}
\end{equation*}
$$

Equality in (12) is attained if and only if $G \cong K_{2}$.
Inequality (12) should be compared with (10).
Proof Start with Eq. 11 and use the facts that $n_{u}(e)+n_{v}(e) \leq n$ and $n_{u}(e) \cdot n_{v}(e) \geq 1$. Then

$$
\begin{aligned}
{\left[G A_{2}(G)\right]^{2} } & \geq \frac{4}{n^{2}} \sum_{u v}\left[n_{u}(e) \cdot n_{v}(e)\right]+2 \sum_{u v \neq u^{\prime} v^{\prime}}\left(\frac{2}{n}\right)\left(\frac{2}{n}\right) \\
& =\frac{4}{n^{2}} S z(G)+\frac{4}{n^{2}}\binom{m}{2}
\end{aligned}
$$

from which (12) follows straightforwardly.
Requirement $n_{u}(e) \cdot n_{v}(e)=1$ is satisfied for all edges if G is a complete graph, whereas $n_{u}(e)+n_{v}(e)=n$ is satisfied for all edges if G is bipartite. Therefore equality in (12) happens only if G is a bipartite complete graph, i. e., $G \cong K_{2}$.

Proposition 7 Let G be a connected graph with n vertices and m edges. Then

$$
\begin{equation*}
G A_{2}(G) \geq \frac{2 m \sqrt{n-1}}{n} \tag{13}
\end{equation*}
$$

with equality if and only if $G \cong S_{n}$, where S_{n} denotes the n-vertex star.
Proof Without loss of generality we may choose the vertices of the edge $e=u v$ so that $n_{u}(e) \geq n_{v}(e)$. Then, by denoting $n_{u}(e) / n_{v}(e)$ by x, we get

$$
\frac{\sqrt{n_{u}(e) \cdot n_{v}(e)}}{\frac{1}{2}\left[n_{u}(e)+n_{v}(e)\right]}=\frac{2 \sqrt{x}}{x+1} .
$$

The variable x assumes values between 1 and $n-1$. In that interval the function $2 \sqrt{x} /(x+1)$ monotonically decreases. Therefore,

$$
\frac{2 \sqrt{x}}{x+1} \geq \frac{2 \sqrt{n-1}}{(n-1)+1}=\frac{2 \sqrt{n-1}}{n}
$$

with equality if and only if e is a pendent edge. The inequality (13) follows.
Note that the star S_{n} is the only n-vertex graph whose all edges are pendent.
Proposition 8 For the complete graph with two vertices, inequalities (12) and (13) are equivalent. For all other connected graphs the lower bound (13) is better than (12).

Proof The right-hand sides of (12) and (13) are equal for $G \cong K_{2}$, when $n=2, m=$ 1 , and $S z=1$. The inequality $(2 m / n) \sqrt{n-1} \geq(2 / n) \sqrt{S z+m(m-1)}$ is easily transformed into $S z \leq m[m(n-2)+1]$. For connected graphs, $m(n-2)+1 \geq$ $(n-1)(n-2)+1=n^{2}-3 n+3$, which for $n>2$ exceeds the maximal value of the product $n_{u}(e) \cdot n_{v}(e)$, namely $\lfloor n / 2\rfloor\lceil n / 2\rceil$. Therefore $S z \leq m[m(n-2)+1]$ holds for all connected graphs with $n>2$ vertices.

3 Trees with extremal second geometric-arithmetic index

Trees are connected bipartite graphs with $n-1$ edges. For them Eq. (2) holds, and $G A_{2}$ is simplified as

$$
G A_{2}=\frac{2}{n-1} \sum_{u v} \sqrt{n_{u}(e) \cdot n_{v}(e)}
$$

Note that the summation on the right-hand side of the above formula goes over $n-1$ terms.

Proposition 9 The star S_{n} is the n-vertex tree with minimum second geometricarithmetic index.

Proof Since $n_{u}(e)+n_{v}(e)=n$, the minimum value of the product $n_{u}(e) \cdot n_{v}(e)$ is $1 \times(n-1)=n-1$, which happens if e is a pendent edge. The star is the only tree in which all edges are pendent.

In order to determine the tree with maximum $G A_{2}$-value we need an auxiliary result. Consider the trees T_{1} and T_{2} depicted in Fig. 1. These two trees differ only in the position of a terminal vertex: in tree T_{2} this terminal vertex is moved from the b-branch to the a-branch. In what follows we assume that $a \geq b$.

In the difference of the $G A_{2}$-values of T_{1} and T_{2}, namely in

$$
\frac{2}{n-1} \sum_{u v \in E\left(T_{1}\right)} \sqrt{n_{u}\left(e, T_{1}\right) \cdot n_{v}\left(e, T_{1}\right)}-\frac{2}{n-1} \sum_{u^{\prime} v^{\prime} \in E\left(T_{2}\right)} \sqrt{n_{u^{\prime}}\left(e^{\prime}, T_{2}\right) \cdot n_{v^{\prime}}\left(e^{\prime}, T_{2}\right)}
$$

Fig. 1 The transformation $T_{1} \rightarrow T_{2}$ increases the $G A_{2}$ index provided $a \geq b$
all terms cancel out except the terms pertaining to the edges indicated by arrows in Fig. 1, for which

$$
\begin{aligned}
n_{u}\left(e, T_{1}\right) \cdot n_{v}\left(e, T_{1}\right) & =b(n-b) \\
n_{u^{\prime}}\left(e^{\prime}, T_{2}\right) \cdot n_{v^{\prime}}\left(e^{\prime}, T_{2}\right) & =(a+1)(n-a-1) .
\end{aligned}
$$

From

$$
b(n-b)-(a+1)(n-a-1)=-(a+1-b)(n-a-b-1)
$$

we conclude that

$$
\frac{2}{n-1}[\sqrt{b(n-b)}-\sqrt{(a+1)(n-a-1)}]
$$

is negative-valued for $a \geq b$, implying that

$$
G A_{2}\left(T_{2}\right)>G A_{2}\left(T_{1}\right)
$$

In other words, the transformation $T_{1} \rightarrow T_{2}$, in which a vertex from a shorter branch is moved to a longer branch, increases the second geometric-arithmetic index.

We are now ready to state and prove:
Proposition 10 The path P_{n} is the n-vertex tree with maximum second geometricarithmetic index.

Proof By continuing the above described transformation $T_{1} \rightarrow T_{2}$ we can move all vertices from the shorter branch to the longer branch, always increasing the $G A_{2-}$ value. Repeating the transformation sufficiently many times, we necessarily arrive at the path P_{n}.

At this point it is natural to attempt to characterize the general n-vertex graphs having minimum and maximum $G A_{2}$. One answer is simple:

Proposition 11 The star S_{n} is the connected n-vertex graph with minimum second geometric-arithmetic index.

Proof The index $G A_{2}$ will certainly be minimal if the following three conditions are simultaneously satisfied:
(a) for all edges e, the denominator $n_{u}(e)+n_{v}(e)$ in Eq. 6 is as large as possible, namely equal to n;
(b) for all edges e, the numerator $\sqrt{n_{u}(e) \cdot n_{v}(e)}$ in Eq. 6 is as small as possible, which was shown above to be equal to $\sqrt{n-1}$;
(c) the number of summands in Eq. 6 is as small as possible, which in case of connected graphs is equal to $n-1$.

It is easy to verify that the star, and only the star, satisfies all these three conditions.

Dobrynin [16] proved that among connected n-vertex graphs the complete bipartite graph $K_{n / 2, n / 2}$ (for even n) or $K_{(n-1) / 2,(n+1) / 2}$ (for odd n) has maximum Szeged index. We conjecture that the same graph has also maximal $G A_{2}$ index.

4 Numerical examples and discussion

In Table 1 are given the $G A, G A_{2}, P I$, and $S z$ indices of the octane isomers. Note that by Eq. 5, all $P I$-values are mutually equal. The correlation between $G A$ and $G A_{2}$ is shown in Fig. 2.

By inspection of Fig. 2, some peculiar relations between the two geometric-arithmetic indices can be envisaged. At the first glance there exists a (nearly linear, but very weak) correlation between $G A$ and $G A_{2}$. The data points $\mathbf{1 5}, \mathbf{1 3}, \mathbf{5}, \mathbf{9}, \mathbf{2}$, and $\mathbf{1}$

Table 1 The $G A, G A_{2}, P I$, and $S z$ indices of the octane isomers; for details see text and Fig. 2

$\#$	Octanes	$G A$	$G A_{2}$	$P I$	$S z$
1	n-Octane	6.88562	5.99142	56	84
2	2-Methyl heptane	6.65466	5.78683	56	79
3	3-Methyl heptane	6.71124	5.68461	56	76
4	4-Methyl heptane	6.71124	5.65286	56	75
5	2,2-Dimethyl hexane	6.28562	5.48002	56	71
6	3,3-Dimethyl hexane	6.37124	5.34605	56	67
7	2,3-Dimethyl hexane	6.52068	5.44827	56	70
8	2,4-Dimethyl hexane	6.48027	5.48002	56	71
9	2,5-Dimethyl hexane	6.42369	5.58224	56	74
10	3,4-Dimethyl hexane	6.57726	5.37780	56	68
11	2,3,4-Trimethyl pentane	6.33013	5.24368	56	65
12	2,2,3-Trimethyl pentane	6.17837	5.17321	56	63
13	2,2,4-Trimethyl pentane	6.05466	5.27543	56	66
14	2,3,3-Trimethyl pentane	6.20741	5.14146	56	62
15	2,2,3,3-Tetramethyl butane	5.80000	4.96863	56	58
16	3-Ethyl-2-methyl pentane	6.57726	5.34605	56	67
17	3-Ethyl-3-methyl pentane	6.45685	5.24383	56	64
18	3-Ethyl hexane	6.76781	5.55064	56	72

Fig. 2 The first geometric-arithmetic index $(G A)$ of the octane isomers vs. their second geometricarithmetic index $\left(G A_{2}\right)$. The numbering is same as in Table 1
form an almost perfect straight line with increasing slope. If we denote the number of quaternary and tertiary carbon atoms by n_{4} and n_{3}, we may immediately check that for these isomers $\left(n_{4}, n_{3}\right)$ is equal to $(2,0),(1,1),(1,0),(0,2),(0,1)$, and $(0,0)$, respectively. This shows that both $G A$ and $G A_{2}$ are increasing functions of the extent of branching of the molecular skeleton. It is worth noting that the molecules 15,13 , $\mathbf{5}, \mathbf{9}$, and $\mathbf{2}$ are all branched at the very end of their carbon-atom chains.

From Fig. 2 it is seen that the data points are grouped into several clusters. By direct checking we verified that each cluster corresponds to a particular choice of $\left(n_{4}, n_{3}\right)$. Note that the apparent outlier $\mathbf{1 1}$ pertains to 2,3,4-trimethyl pentane, the only octane isomer for which $\left(n_{4}, n_{3}\right)=(0,3)$.

Thus, the isomers belonging to the same cluster are those similarly branched. Within each such cluster (provided that there are two or more data points), the proportionality between $G A$ and $G A_{2}$ is inverse. For instance, the data points $\mathbf{7 , ~ 8}, \mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 6}$, all pertaining to $\left(n_{4}, n_{3}\right)=(0,2)$, lie nearly on a straight line with decreasing slope.

The above described relations between $G A$ and $G A_{2}$, which hold not only for octanes, but for all chemical trees, indicate that these indices depend in the same way on one structural feature (namely, on branching), but have a different dependence on some other details of molecular structure. This gives hope that $G A$ and $G A_{2}$ will both be simultaneously applicable in QSPR and QSAR studies.

Acknowledgments B. F. and I. G. thank the Serbian Ministry of Science for support, through Grant no. 144015G.

References

1. D. Vukičević, B. Furtula, J. Math. Chem. (2009). doi:10.1007/s10910-009-9520-x (in press)
2. M. Randić, J. Am. Chem. Soc. 97, 6609 (1975)
3. X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors (Univ. Kragujevac, Kragujevac, 2006)
4. I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randic Index (Univ. Kragujevac, Kragujevac, 2008)
5. F. Buckley, F. Harary, Distance in Graphs (Addison-Wesley, Redwood, 1990)
6. I. Gutman, A.A. Dobrynin, Graph Theory Notes N. Y. 34, 37 (1998)
7. M.V. Diudea, M.S. Florescu, P.V. Khadikar, Molecular Topology and Its Applications (EfiCon Press, Bucharest, 2006)
8. A.R. Ashrafi, M. Ghorbani, M. Jalali, J. Theory Comput. Chem. 2, 221 (2008)
9. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Lin. Algebra Appl. 429, 2702 (2008)
10. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Discr. Appl. Math. 156, 1780 (2008)
11. T. Mansour, M. Schork, Discr. Appl. Math. 157, 1600 (2009)
12. G.H. Fath-Tabar, M.J. Nadjafi-Arani, M. Mogharrab, A.R. Ashrafi, MATCH Commun. Math. Comput. Chem. 63, 145 (2010)
13. P.V. Khadikar, Nat. Acad. Sci. Lett. 23, 113 (2000)
14. P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar, V.K. Agrawal, J. Math. Chem. 29, 143 (2001)
15. P.V. Khadikar, S. Karmarkar, V.K. Agrawal, J. Chem. Inf. Comput. Sci. 41, 934 (2001)
16. A.A. Dobrynin, Croat. Chem. Acta 70, 819 (1997)

[^0]: G. Fath-Tabar

 Department of Mathematics, Faculty of Science, University of Kashan, 87317-51167 Kashan, Islamic Republic of Iran
 e-mail: fathtabar@kashanu.ac.ir
 B. Furtula • I. Gutman (\boxtimes)

 Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
 e-mail: gutman@kg.ac.rs
 B. Furtula
 e-mail: furtula@kg.ac.rs

