ORIGINAL PAPER

A new geometric–arithmetic index

Gholamhossein Fath-Tabar · Boris Furtula · Ivan Gutman

Received: 28 April 2009 / Accepted: 27 July 2009 / Published online: 13 August 2009 © Springer Science+Business Media, LLC 2009

Abstract A new molecular-structure descriptor GA_2 , belonging to the class of geometric–arithmetic indices, is considered. It is closely related to the Szeged and vertex PI indices. The main properties of GA_2 are established, including lower and upper bounds. The trees with minimum and maximum GA_2 are characterized.

Keywords Geometric–arithmetic index \cdot Szeged index \cdot PI index \cdot Distance (in graph) \cdot Molecular-structure descriptor

1 Introduction

In a recent paper [1] the so-called *geometric–arithmetic index* GA was conceived, defined as

$$GA = GA(G) = \sum_{uv \in E(G)} \frac{\sqrt{d_u \, d_v}}{\frac{1}{2}(d_u + d_v)}$$

where uv is an edge of the (molecular) graph G connecting the vertices u and v, where d_u stands for the degree of the vertex u, and where the summation goes over

G. Fath-Tabar

B. Furtula · I. Gutman (⊠) Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia e-mail: gutman@kg.ac.rs

B. Furtula e-mail: furtula@kg.ac.rs

Department of Mathematics, Faculty of Science, University of Kashan, 87317-51167 Kashan, Islamic Republic of Iran e-mail: fathtabar@kashanu.ac.ir

all edges of G. It is easy to recognize that GA is just the first representative of a class of topological indices of the form

$$GA_{\text{general}} = GA_{\text{general}}(G) = \sum_{uv \in E(G)} \frac{\sqrt{\mathcal{Q}_u \, \mathcal{Q}_v}}{\frac{1}{2}(\mathcal{Q}_u + \mathcal{Q}_v)} \tag{1}$$

where Q_u is some quantity that in a unique manner can be associated with the vertex u of the graph G.

In this work we focus our attention to another member of this class, which we denote by GA_2 and which—tentatively—may be referred to as the *second geometric–arithmetic index*. Whereas GA is defined so as to be related to the famous Randić index [2–4], GA_2 is constructed in such a manner that it is related with Szeged and PI indices (see below).

Let *G* be a connected graph with *n* vertices and *m* edges, with vertex set V(G) and edge set E(G). As usual [5], the distance d(x, y|G) between two vertices $x, y \in V(G)$ is defined as the length (= number of edges) of the shortest path that connects *x* and *y*.

Let e = uv be an edge of G, connecting the vertices u and v. Define the sets

$$\mathbf{N}(e, u, G) = \{ x \in V(G) | d(x, u|G) < d(x, v|G) \}$$
$$\mathbf{N}(e, v, G) = \{ x \in V(G) | d(x, u|G) > d(x, v|G) \}.$$

consisting, respectively, of vertices of G lying closer to u than to v, and lying closer to v than to u. The number of such vertices is then

$$n_u(e) = n_u(e, G) = |\mathbf{N}(e, u, G)|$$
 and $n_v(e) = n_v(e) = |\mathbf{N}(e, v, G)|$.

Note that vertices equidistant to u and v are not included into either N(e, u, G) or N(e, v, G). Such vertices exist only if the edge uv belongs to an odd-membered cycle. Hence, in the case of bipartite graphs, $N(e, u, G) \cup N(e, v, G) = V(G)$ and, consequently,

$$n_u(e, G) + n_v(e, G) = n$$
 (2)

for all edges of the graph G.

It it also worth noting that $u \in \mathbf{N}(e, u, G)$ and $v \in \mathbf{N}(e, v, G)$, which implies that $n_u(e) \ge 1$ and $n_v(e) \ge 1$.

A previously much studied molecular-structure descriptor is the Szeged index:

$$Sz = Sz(G) = \sum_{uv \in E(G)} n_u(e) \cdot n_v(e).$$
(3)

Its main mathematical properties are outlined in the review [6] whereas data on its numerous chemical and pharmacological applications can be found in the book [7] and the references cited therein.

Another recently conceived structure descriptor [8–12], based on the numbers $n_u(e)$ and $n_v(e)$, is the so-called *vertex PI index*:

$$PI_{v} = PI_{v}(G) = \sum_{uv \in E(G)} [n_{u}(e) + n_{v}(e)].$$
(4)

Recall that the abbreviation *PI* comes from "*Padmakar–Ivan*" where "*Padmakar*" is the first name of Khadikar, the inventor of the *PI* index [7,13–15], whereas "*Ivan*" is the first name of Gutman, who did not at all contribute to the development of this structure descriptor.

Because of (2), the vertex PI index of a bipartite graph with n vertices and m edges satisfies the simple identity

$$PI_v(G) = mn. (5)$$

Now, motivated by the expressions occurring on the right-hand sides of Eqs. (3) and (4), and in view of the general formula (1), we define the *second geometric–arithmetic index* as

$$GA_2 = GA_2(G) = \sum_{uv \in E(G)} \frac{\sqrt{n_u(e) \cdot n_v(e)}}{\frac{1}{2}[n_u(e) + n_v(e)]}.$$
(6)

2 Bounds for the second geometric-arithmetic index

We say that the vertices x and y of a graph G are equivalent if the subgraphs G - x and G - y are isomorphic, $G - x \cong G - y$.

As usual, by K_n we denote the complete graph on *n* vertices. Among connected graphs K_n is the only graph for which $n_u(e) = n_v(e) = 1$ holds for all edges e = uv.

In view of the well-known fact that the geometric mean is less than or equal to the arithmetic mean, we have for any geometric–arithmetic index of a graph G with m edges,

$$GA_{\text{general}}(G) \leq m.$$

The special case of this is:

Proposition 1 Let G be a connected graph. Then $GA_2(G) \le m$, with equality if and only if all vertices of G are mutually equivalent.

Only a few molecular graphs have the property $GA_2 = m$: the cycle and K_2 . Since for any edge e = uv we have $n_u(e) + n_v(e) \ge 2$ and $\sqrt{n_u(e) \cdot n_v(e)} \le [n_u(e) + n_v(e)]/2$, directly from Eqs. 4 and 6 we get:

Proposition 2 For any connected graph G,

$$GA_2(G) \le \frac{1}{2} PI_v(G)$$

with equality if and only if $n_u(e) = n_v(e) = 1$ holds for all edges e = uv, *i. e.*, *if and* only if $G \cong K_n$.

Recall that in the case of bipartite graphs (that is, in the case of almost all molecular graphs), $PI_v = m n$.

Proposition 3 For any connected graph with m edges,

$$GA_2(G) \le \sqrt{m \, Sz(G)} \tag{7}$$

with equality if and only if $G \cong K_n$.

Proof Because of $n_u(e)$, $n_v(e) \ge 1$,

$$GA_2(G) \le \sum_{uv \in E(G)} \sqrt{n_u(e) \cdot n_v(e)}.$$
(8)

Applying the Cauchy-Schwarz inequality,

$$\sum_{uv \in E(G)} \sqrt{n_u(e) \cdot n_v(e)} = \sum_{uv \in E(G)} 1 \cdot \sqrt{n_u(e) \cdot n_v(e)}$$
$$\leq \sqrt{\left(\sum_{uv \in E(G)} 1^2\right) \left(\sum_{uv \in (EG)} n_u(e) \cdot n_v(e)\right)}$$
$$= \sqrt{m \cdot Sz(G)}.$$
(9)

Equality in (9) occurs if and only if $n_u(e) = n_v(e)$ holds for all *e*. For equality in (8), in addition it must be $n_u(e) = n_v(e) = 1$, which implies $G \cong K_n$.

Proposition 4 For any connected graph with m edges,

$$GA_2(G) \le \sqrt{Sz(G) + m(m-1)} \tag{10}$$

with equality if and only if $G \cong K_n$.

Proof

$$[GA_{2}(G)]^{2} = \sum_{uv} \frac{4n_{u}(e) \cdot n_{v}(e)}{[n_{u}(e) + n_{v}(e)]^{2}} + 2\sum_{uv \neq u'v'} \frac{2\sqrt{n_{u}(e) \cdot n_{v}(e)}}{n_{u}(e) + n_{v}(e)} \cdot \frac{2\sqrt{n_{u'}(e') \cdot n_{v'}(e')}}{n_{u'}(e') + n_{v'}(e')} \leq \sum_{uv} [n_{u}(e) \cdot n_{v}(e)] + 2\sum_{uv \neq u'v'} (1) \cdot (1) = \sum_{uv} [n_{u}(e) \cdot n_{v}(e)] + 2\frac{m(m-1)}{2}$$
(11)

Deringer

and inequality (10) follows from (3). The case of equality is analyzed in the same manner as in the previous propositions. \Box

Proposition 5 For the complete graph inequalities (7) and (10) are equivalent. For all other connected graphs the upper bound (10) is better than (7).

Proof The inequality $\sqrt{mSz} \ge \sqrt{Sz + m(m-1)}$ is easily transformed into $Sz \ge m$, which because of $n_u(e) \cdot n_v(e) \ge 1$ is obeyed by all graphs with *m* edges. Equality happens if and only if $n_u(e) = n_v(e) = 1$ for all edges.

Proposition 6 Let G be a connected graph with n vertices and $m \ge 1$ edges. Then

$$GA_2(G) \ge \frac{2}{n}\sqrt{Sz+m(m-1)}.$$
 (12)

Equality in (12) is attained if and only if $G \cong K_2$.

Inequality (12) should be compared with (10).

Proof Start with Eq. 11 and use the facts that $n_u(e) + n_v(e) \le n$ and $n_u(e) \cdot n_v(e) \ge 1$. Then

$$[GA_2(G)]^2 \ge \frac{4}{n^2} \sum_{uv} [n_u(e) \cdot n_v(e)] + 2 \sum_{uv \neq u'v'} \left(\frac{2}{n}\right) \left(\frac{2}{n}\right)$$
$$= \frac{4}{n^2} S_z(G) + \frac{4}{n^2} \binom{m}{2}$$

from which (12) follows straightforwardly.

Requirement $n_u(e) \cdot n_v(e) = 1$ is satisfied for all edges if *G* is a complete graph, whereas $n_u(e) + n_v(e) = n$ is satisfied for all edges if *G* is bipartite. Therefore equality in (12) happens only if *G* is a bipartite complete graph, i. e., $G \cong K_2$.

Proposition 7 Let G be a connected graph with n vertices and m edges. Then

$$GA_2(G) \ge \frac{2m\sqrt{n-1}}{n} \tag{13}$$

with equality if and only if $G \cong S_n$, where S_n denotes the n-vertex star.

Proof Without loss of generality we may choose the vertices of the edge e = uv so that $n_u(e) \ge n_v(e)$. Then, by denoting $n_u(e)/n_v(e)$ by x, we get

$$\frac{\sqrt{n_u(e) \cdot n_v(e)}}{\frac{1}{2}[n_u(e) + n_v(e)]} = \frac{2\sqrt{x}}{x+1}.$$

The variable x assumes values between 1 and n - 1. In that interval the function $2\sqrt{x}/(x + 1)$ monotonically decreases. Therefore,

$$\frac{2\sqrt{x}}{x+1} \ge \frac{2\sqrt{n-1}}{(n-1)+1} = \frac{2\sqrt{n-1}}{n}$$

with equality if and only if e is a pendent edge. The inequality (13) follows.

Note that the star S_n is the only *n*-vertex graph whose all edges are pendent. \Box

Proposition 8 For the complete graph with two vertices, inequalities (12) and (13) are equivalent. For all other connected graphs the lower bound (13) is better than (12).

Proof The right-hand sides of (12) and (13) are equal for $G \cong K_2$, when n = 2, m = 1, and Sz = 1. The inequality $(2m/n)\sqrt{n-1} \ge (2/n)\sqrt{Sz+m(m-1)}$ is easily transformed into $Sz \le m[m(n-2)+1]$. For connected graphs, $m(n-2)+1 \ge (n-1)(n-2)+1 = n^2 - 3n + 3$, which for n > 2 exceeds the maximal value of the product $n_u(e) \cdot n_v(e)$, namely $\lfloor n/2 \rfloor \lceil n/2 \rceil$. Therefore $Sz \le m[m(n-2)+1]$ holds for all connected graphs with n > 2 vertices.

3 Trees with extremal second geometric-arithmetic index

Trees are connected bipartite graphs with n - 1 edges. For them Eq. (2) holds, and GA_2 is simplified as

$$GA_2 = \frac{2}{n-1} \sum_{uv} \sqrt{n_u(e) \cdot n_v(e)}.$$

Note that the summation on the right-hand side of the above formula goes over n - 1 terms.

Proposition 9 The star S_n is the n-vertex tree with minimum second geometricarithmetic index.

Proof Since $n_u(e) + n_v(e) = n$, the minimum value of the product $n_u(e) \cdot n_v(e)$ is $1 \times (n-1) = n - 1$, which happens if *e* is a pendent edge. The star is the only tree in which all edges are pendent.

In order to determine the tree with maximum GA_2 -value we need an auxiliary result. Consider the trees T_1 and T_2 depicted in Fig. 1. These two trees differ only in the position of a terminal vertex: in tree T_2 this terminal vertex is moved from the *b*-branch to the *a*-branch. In what follows we assume that $a \ge b$.

In the difference of the GA_2 -values of T_1 and T_2 , namely in

$$\frac{2}{n-1} \sum_{uv \in E(T_1)} \sqrt{n_u(e, T_1) \cdot n_v(e, T_1)} - \frac{2}{n-1} \sum_{u'v' \in E(T_2)} \sqrt{n_{u'}(e', T_2) \cdot n_{v'}(e', T_2)}$$

Fig. 1 The transformation $T_1 \rightarrow T_2$ increases the GA_2 index provided $a \ge b$

all terms cancel out except the terms pertaining to the edges indicated by arrows in Fig. 1, for which

$$n_u(e, T_1) \cdot n_v(e, T_1) = b(n-b)$$

$$n_{u'}(e', T_2) \cdot n_{v'}(e', T_2) = (a+1)(n-a-1).$$

From

$$b(n-b) - (a+1)(n-a-1) = -(a+1-b)(n-a-b-1)$$

we conclude that

$$\frac{2}{n-1}\left[\sqrt{b(n-b)} - \sqrt{(a+1)(n-a-1)}\right]$$

is negative-valued for $a \ge b$, implying that

$$GA_2(T_2) > GA_2(T_1).$$

In other words, the transformation $T_1 \rightarrow T_2$, in which a vertex from a shorter branch is moved to a longer branch, increases the second geometric–arithmetic index.

We are now ready to state and prove:

Proposition 10 The path P_n is the n-vertex tree with maximum second geometricarithmetic index.

Proof By continuing the above described transformation $T_1 \rightarrow T_2$ we can move all vertices from the shorter branch to the longer branch, always increasing the GA_2 -value. Repeating the transformation sufficiently many times, we necessarily arrive at the path P_n .

At this point it is natural to attempt to characterize the general n-vertex graphs having minimum and maximum GA_2 . One answer is simple:

Proposition 11 The star S_n is the connected n-vertex graph with minimum second geometric–arithmetic index.

Proof The index GA_2 will certainly be minimal if the following three conditions are simultaneously satisfied:

- (a) for all edges *e*, the denominator $n_u(e) + n_v(e)$ in Eq. 6 is as large as possible, namely equal to *n*;
- (b) for all edges e, the numerator $\sqrt{n_u(e) \cdot n_v(e)}$ in Eq. 6 is as small as possible, which was shown above to be equal to $\sqrt{n-1}$;
- (c) the number of summands in Eq. 6 is as small as possible, which in case of connected graphs is equal to n 1.

It is easy to verify that the star, and only the star, satisfies all these three conditions. \Box

Dobrynin [16] proved that among connected *n*-vertex graphs the complete bipartite graph $K_{n/2,n/2}$ (for even *n*) or $K_{(n-1)/2,(n+1)/2}$ (for odd *n*) has maximum Szeged index. We conjecture that the same graph has also maximal GA_2 index.

4 Numerical examples and discussion

In Table 1 are given the GA, GA_2 , PI, and Sz indices of the octane isomers. Note that by Eq. 5, all PI-values are mutually equal. The correlation between GA and GA_2 is shown in Fig. 2.

By inspection of Fig. 2, some peculiar relations between the two geometric–arithmetic indices can be envisaged. At the first glance there exists a (nearly linear, but very weak) correlation between GA and GA_2 . The data points 15, 13, 5, 9, 2, and 1

#	Octanes	GA	GA_2	PI	Sz
1	<i>n</i> -Octane	6.88562	5.99142	56	84
2	2-Methyl heptane	6.65466	5.78683	56	79
3	3-Methyl heptane	6.71124	5.68461	56	76
4	4-Methyl heptane	6.71124	5.65286	56	75
5	2,2-Dimethyl hexane	6.28562	5.48002	56	71
6	3,3-Dimethyl hexane	6.37124	5.34605	56	67
7	2,3-Dimethyl hexane	6.52068	5.44827	56	70
8	2,4-Dimethyl hexane	6.48027	5.48002	56	71
9	2,5-Dimethyl hexane	6.42369	5.58224	56	74
10	3,4-Dimethyl hexane	6.57726	5.37780	56	68
11	2,3,4-Trimethyl pentane	6.33013	5.24368	56	65
12	2,2,3-Trimethyl pentane	6.17837	5.17321	56	63
13	2,2,4-Trimethyl pentane	6.05466	5.27543	56	66
14	2,3,3-Trimethyl pentane	6.20741	5.14146	56	62
15	2,2,3,3-Tetramethyl butane	5.80000	4.96863	56	58
16	3-Ethyl-2-methyl pentane	6.57726	5.34605	56	67
17	3-Ethyl-3-methyl pentane	6.45685	5.24383	56	64
18	3-Ethyl hexane	6.76781	5.55064	56	72

Table 1 The GA, GA₂, PI, and Sz indices of the octane isomers; for details see text and Fig. 2

Fig. 2 The first geometric–arithmetic index (GA) of the octane isomers vs. their second geometric–arithmetic index (GA_2) . The numbering is same as in Table 1

form an almost perfect straight line with increasing slope. If we denote the number of quaternary and tertiary carbon atoms by n_4 and n_3 , we may immediately check that for these isomers (n_4, n_3) is equal to (2, 0), (1, 1), (1, 0), (0, 2), (0, 1), and (0, 0), respectively. This shows that both *GA* and *GA*₂ are increasing functions of the extent of branching of the molecular skeleton. It is worth noting that the molecules **15**, **13**, **5**, **9**, and **2** are all branched at the very end of their carbon-atom chains.

From Fig. 2 it is seen that the data points are grouped into several clusters. By direct checking we verified that each cluster corresponds to a particular choice of (n_4, n_3) . Note that the apparent outlier **11** pertains to 2,3,4-trimethyl pentane, the only octane isomer for which $(n_4, n_3) = (0, 3)$.

Thus, the isomers belonging to the same cluster are those similarly branched. Within each such cluster (provided that there are two or more data points), the proportionality between GA and GA_2 is inverse. For instance, the data points **7**, **8**, **9**, **10**, and **16**, all pertaining to $(n_4, n_3) = (0, 2)$, lie nearly on a straight line with decreasing slope.

The above described relations between GA and GA_2 , which hold not only for octanes, but for all chemical trees, indicate that these indices depend in the same way on one structural feature (namely, on branching), but have a different dependence on some other details of molecular structure. This gives hope that GA and GA_2 will both be simultaneously applicable in QSPR and QSAR studies.

Acknowledgments B. F. and I. G. thank the Serbian Ministry of Science for support, through Grant no. 144015G.

References

- 1. D. Vukičević, B. Furtula, J. Math. Chem. (2009). doi:10.1007/s10910-009-9520-x (in press)
- 2. M. Randić, J. Am. Chem. Soc. 97, 6609 (1975)

- X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors (Univ. Kragujevac, Kragujevac, 2006)
- 4. I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randić Index (Univ. Kragujevac, Kragujevac, 2008)
- 5. F. Buckley, F. Harary, Distance in Graphs (Addison-Wesley, Redwood, 1990)
- 6. I. Gutman, A.A. Dobrynin, Graph Theory Notes N. Y. 34, 37 (1998)
- 7. M.V. Diudea, M.S. Florescu, P.V. Khadikar, *Molecular Topology and Its Applications* (EfiCon Press, Bucharest, 2006)
- 8. A.R. Ashrafi, M. Ghorbani, M. Jalali, J. Theory Comput. Chem. 2, 221 (2008)
- 9. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Lin. Algebra Appl. 429, 2702 (2008)
- 10. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Discr. Appl. Math. 156, 1780 (2008)
- 11. T. Mansour, M. Schork, Discr. Appl. Math. 157, 1600 (2009)
- G.H. Fath-Tabar, M.J. Nadjafi-Arani, M. Mogharrab, A.R. Ashrafi, MATCH Commun. Math. Comput. Chem. 63, 145 (2010)
- 13. P.V. Khadikar, Nat. Acad. Sci. Lett. 23, 113 (2000)
- 14. P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar, V.K. Agrawal, J. Math. Chem. 29, 143 (2001)
- 15. P.V. Khadikar, S. Karmarkar, V.K. Agrawal, J. Chem. Inf. Comput. Sci. 41, 934 (2001)
- 16. A.A. Dobrynin, Croat. Chem. Acta 70, 819 (1997)